Abstract—In this paper we present a way of tuning the temporal characteristics of a new available-bandwidth estimation method, BART. The estimation engine in this method is Kalman-filter based. A current estimate of the available bandwidth is maintained, and for each new sequence of probe packet pairs an updated estimate is produced. The main input parameters needed by the Kalman filter are the variance of the measurement noise and the covariance of the process noise. The former is measured by the method, whereas the latter is not in general attainable by analytical or empirical investigation. Instead, it is reasonable to treat this as a tunable parameter. We discuss how the temporal characteristics of the tracking of end-to-end available bandwidth may be tuned.

I. INTRODUCTION

A. Overview

The capability of estimating end-to-end available bandwidth is useful in several contexts, including service level agreement verification, network monitoring and server selection. Estimation of bandwidth in real-time, with per-sample update, opens up for many applications, including adaptation based on available bandwidth directly (rather than measures such as loss or delay) in e.g. congestion control and streaming of audio and video.

Estimation methods based on a filtering approach possess this compelling feature of producing an updated estimate for each new sampling of the system properties. For instance, by probing the network with probe packets once every second, one obtains an updated estimate of the currently available bandwidth every second, allowing to track the bandwidth on a second-by-second basis, provided of course one has been able to successfully apply a filter method to the estimation problem. Recently, such a method, BART (Bandwidth Available in Real-Time), has been evaluated [1], including measurements over the Internet.

In this paper, we investigate the possibility of tuning BART to track the available bandwidth at an arbitrary averaging time scale \(\tau \) [2]. There is no canonical time scale at which to define available bandwidth. The relevant time resolution may be different for various applications.

The time scale of bandwidth tracking offered by BART is related to two adjustable properties. The obvious one is the inter-probing time. In the example above, when we probe once per second, we cannot hope to accurately track the bandwidth fluctuations at any time resolution better than approximately two seconds (cf. the sampling theorem in information theory). By decreasing the inter-probing time, an improved tracking performance is expected; however, the trade-off is the larger amount of probe traffic affecting the network. The more subtle adjustable property is the process noise covariance, \(Q \), one of the crucial filter parameters. This is a 2×2 matrix in the BART formalism.

In the present paper, we explore how the elements of \(Q \) could be chosen so as to optimize the tracking performance of BART for desired bandwidth variability. We introduce and apply a specific variability measure, which captures the effect of both time resolution and traffic aggregation.

B. Related Work

Several other bandwidth estimation methods have been proposed [3, 4, 5, 6, 7, 8, 9, 10]. These methods have been compared for performance [11, 12].

In a seminal paper on packet-pair techniques [13], Keshav discussed using a Kalman filter for the estimation of “bottleneck service rate” for end-point flow control purposes, and concluded that this would not be practical. However, his analysis rested on the assumption that queuing service in network nodes is based on stateful flow-based round-robin instead of stateless first-come first-served (FCFS), whereas typically the opposite holds in today’s Internet.

II. FILTER-BASED BANDWIDTH ESTIMATION

A. Filter-Based Estimation

In a filter-based approach, the state of a system is estimated from repeated measurements of some quantity dependent on the system state, given models of how the system state evolves from one measurement occasion to the next, and how the measured quantity depends on the system state. Both these dependencies include a random noise term; the process noise and the measurement noise, respectively.
The system equations are then

\[x_k = f(x_{k-1}) + w_{k-1} \]
\[z_k = h(x_k) + v_k \]

where \(x \) is the state of the system, \(z \) is the measurement, \(w \) is the process noise and \(v \) is the measurement noise. The functions \(f \) and \(h \) represent the system evolution model and the measurement model, respectively. The subscript refers to the “discrete time”.

A filter is a procedure which takes a previous estimate \(\hat{x}_{k-1} \) and a new measurement \(z_k \) as input, and calculates a new estimate \(\hat{x}_k \) of the system state. A compelling property of filters is that they are capable of producing estimates in real-time, i.e. tracking the system state. For each new measurement, the previous estimate is updated.

A key point of this paper is how the relative weights of the previous estimate and the new measurement in the filtering process influence the temporal characteristics of the method. We return to this below.

If the functions \(f \) and \(h \) are linear, and if both the process noise and the measurement noise are Gaussian and uncorrelated, there is an optimal filter, namely the Kalman filter [14]. Experience has shown that Kalman filters often work very well, even when these conditions are not strictly met. Another important advantage with Kalman filters is that, unless the dimensionality of the system is very large, they are computationally light-weight, with minimal requirements on CPU and memory.

In this linear case the system equations can be expressed using matrices:

\[x_k = A x_{k-1} + w_{k-1} \]
\[z_k = H x_k + v_k \]

The Kalman filter equations allowing calculation of the new estimate from the previous estimate and the new measurement are (for details, see [14]):

\[\hat{x}_k = \hat{x}_{k-1} + K_k (z_k - H \hat{x}_{k-1}) \]
\[P_k = (I - K_k H) P_{k-1} \]

where

\[\hat{x}_{k-1} = A \hat{x}_{k-1} \]
\[P_{k-1} = AP_{k-1} A^T + Q \]

and

\[K_k = P_{k-1} H^T (HP_{k-1} H^T + R)^{-1} \].

Kalman filtering can be understood as a process where there are two phases of calculation in each iteration. First, there is a “prediction” phase, where the previous estimate evolves one discrete time step according to the system model (7). Then, there is a “correction” phase, where the new measurement is taken into account (5). One also computes the updated error covariance matrix \(P_k \) of the state estimate.

Of special interest in these equations is the Kalman gain \(K_k \), given by (9) and appearing in (5) and (6). This can be interpreted as the relative weight given to the new measurement as opposed to the pure expected evolution of the previous estimate.

As can be seen from (8) and (9), the Kalman gain increases with \(Q \) and decreases with \(R \). These required inputs to the Kalman filter are the covariances of the process noise \(w \) and measurement noise \(v \), respectively. An intuitive understanding of the importance of these quantities may be acquired by the following arguments:

- Large variations of the noise in the system model (high \(Q \)) mean that the prediction according to the system model is likely to be less accurate, and the new measurement should be weighted heavier.
- Large variations in the measurement noise (high \(R \)) mean that the new measurement is likely to be less accurate, and the prediction should be weighted heavier.

B. The BART Filter Method for Available Bandwidth Estimation

The BART (Bandwidth Available in Real-Time) method for available bandwidth estimation [1] makes use of a Kalman filter in order to produce an updated estimate of the available bandwidth over a network path for each new measurement. Measurements are performed at randomized probing rates, in order to achieve optimal statistical estimation properties. Each measurement consists of sending a sequence of pairs of packets, which are time-stamped on sending and on arrival, and calculating the average relative increase \(\varepsilon \) in packet-pair time separation. At the same time, the variance of \(\varepsilon \) is computed, so \(R \) is measured. From a simple FCFS network model [10], it is seen that the expectation value of \(\varepsilon \) is zero when the probing rate \(u \) is less than the available bandwidth \(B \), and grows in proportion to the overload when the probing rate is larger:

\[\varepsilon = \begin{cases} 0 & (u < B) \\ \alpha (u - B) + \beta & (u \geq B) \end{cases} \]

In order to use dimensionless quantities in the BART filtering, we normalize \(u \) with respect to the maximum probe intensity \(u_{max} \).

It should be noted that the Kalman filter method is very “forgiving”, and good results are often produced even when the ideal conditions are slightly broken. So, even if a real system displays characteristics which deviate somewhat from this piecewise linear system curve, the resulting available bandwidth estimate is not automatically invalidated.

Of course, all variables in this model are dynamical, i.e. may vary in time, so they depend on the subscript (which is sometimes suppressed in this exposition).

1 This can be formulated more generally, when the system is also influenced by a control input. Since this is not needed in BART, this additional degree of freedom is not used in this paper.
This model allows for application of a Kalman filter, when we represent the state of the system by a vector containing the two parameters of the sloping straight line

\[x = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}. \]
(11)

We may then write, for the measurement \(z_k \) of the strain at discrete time \(k \),

\[z_k = Hx_k + v_k \]
(12)

where

\[H = [u \ 1]. \]
(13)

Also, we write for the evolution of the system state

\[x_k = x_{k-1} + w_{k-1} \]
(14)

which means that we may apply the Kalman filter formalism with \(A = I \).

The Kalman equations in BART become computationally very simple, and only a few floating-point operations are needed at each iteration.

When the filter estimates the system state variables \(\alpha \) and \(\beta \) we immediately obtain the estimate for the available bandwidth \(B \), since these quantities are related by

\[\alpha B + \beta = 0. \]
(15)

C. The Structure of \(Q \)

The state vector \(x \) in BART is two-dimensional, so the covariance \(Q \) of the process noise \(w \) is a 2×2 matrix.

In (14), the process noise is defined as the change of the system state between two consecutive measurements (which is due to the change in cross traffic).

\[w = \Delta x = \begin{bmatrix} \Delta \alpha \\ \Delta \beta \end{bmatrix} \]
(16)

so we have

\[Q = \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix} = \begin{bmatrix} V(\Delta \alpha) & C(\Delta \alpha, \Delta \beta) \\ C(\Delta \alpha, \Delta \beta) & V(\Delta \beta) \end{bmatrix}. \]
(17)

\(Q \) is a symmetric matrix, i.e. \(Q_{21} = Q_{12} \), so there are three degrees of freedom available for tuning. The allowed ranges are given by the inequalities \(Q_{11} \geq 0, \ Q_{22} \geq 0, \) and \(-\sqrt{Q_{11}Q_{22}} \leq Q_{12} \leq \sqrt{Q_{11}Q_{22}} \). These bounds are simply due to the properties of variances and covariances of stochastic variables.

It should be noted that in this model, \(\alpha \) is the inverse of the tight link capacity. When the cross traffic intensity varies, we can expect \(\beta \) to vary and \(\alpha \) to be rather stable. This means that \(Q_{11} \) and \(Q_{12} \) could be expected to be small compared to \(Q_{22} \), unless the network is in a state where the tight link is frequently moving.

D. Tuning BART

The BART estimation method comprises several tunable components:

- The probe packet size
- The number of probe-packet pairs in each measurement
- The organization of the probe pairs, i.e. separated or as a train
- The inter-measurement time separation
- The probability distribution for the probing intensity
- The covariance matrix of the process noise

In the present paper, we are specifically addressing the temporal characteristics of BART, and we will limit our attention to tuning of the latter component, i.e. \(Q \), the covariance matrix of the process noise. All the other components are fixed in this study, although some of them have been evaluated in [1]. There is plenty of opportunity for further performance increase. However, the qualitative dependence of the temporal characteristics on \(Q \) we find in the present paper is likely to remain also when more evolved choices of other components are made.

III. Experiment

![Fig. 1. An illustration of the testbed used for the experiment.](image)

In order to evaluate the estimation performance of BART at different traffic aggregation and time resolution for a large number of different \(Q \), the experiment was carried out in phases. First, we studied two traffic cases of different aggregation level in a lab network with two Extreme Summit routers (Fig. 1). In each traffic case, the true cross traffic was recorded using the standard tool tcpdump, while the probe traffic receiver host recorded the series of measurements \(z_k \) and \(R_k \) for \(k = 1 \ldots 2000 \) (i.e. once every second for 2000 seconds). See below for details of traffic cases and BART probing setup.

Then, the true available bandwidth \(B_k \) for \(k = 1 \ldots 2000 \) was calculated from the cross traffic traces using a sliding window at eight different averaging time scales, \(\tau = 1, 2, 4, 8, 16, 32, 64, \) and 128 seconds. The tight link capacity was known due to the setup.

Finally, the BART filter estimation engine was fed the series of measurements \((z_k, R_k) \) and produced the series of estimates \(\hat{B}_k \) for \(k = 1 \ldots 2000 \). This was done for a wide range of \(Q \). For each time scale \(\tau \), these estimates were compared to the true available bandwidth \(B_k \) for \(k = 1 \ldots 2000 \), and the optimal \(Q \) was identified.

As a metric for the precision of the estimation during the whole 2000 second tracking, we used the root mean square
of the relative estimation error (RMSE):

\[RMSE = \sqrt{\frac{1}{2000} \sum_{k=1}^{2000} \left(\frac{\hat{B}_k - B_k}{B_k} \right)^2} \]

(18)

In order to be able to tune the temporal characteristics of the estimation, we need to quantify the deviation from a straight line of the bandwidth as a function of time. As a metric for this, we introduce the quantity \textit{variability}:

\[\text{Variability} = \sqrt[\tau]{\Delta B_k} = \sqrt[\tau]{B_2 - B_1, B_3 - B_2, \ldots} \]

(19)

i.e. we use the standard deviation of the set of consecutive differences of bandwidth values.

\textbf{Traffic cases}: Synthetic cross traffic was generated, emulating a varying number of users in two different aggregation levels. In the two traffic cases used, the expectation value of the number of users was 10 and 100, respectively. New users arrive according to a Poisson process and remain active according to a Pareto distribution (shape = 1.5, mean = 1.0 second). When users are active, UDP packets are transmitted\(^2\) with inter-arrival times following a Pareto distribution (shape = 1.9). The distribution parameters were chosen such that in both cases the expectation value of the overall cross traffic intensity was 5 Mbit/s.

BART was configured to transmit sequences of pairs of 1500-byte probe packets, organized as trains of 17 packets (16 pairs). The traffic intensity for each probe train was randomly chosen using a uniform distribution from 1 Mbit/s to 20 Mbit/s (more useful information is fed to the filter when we also probe at rates higher than the bottleneck capacity). The inter-departure time between two consecutive probe trains was set to one second; the average probe traffic overhead became 0.204 Mbit/s.

\textbf{IV. RESULTS}

Regarding the RMSE precision of the estimation, it soon became apparent that there is not much to be gained by tuning \(Q_{12}\). This is illustrated in Fig. 2, which shows an example where the RMSE is plotted against \(Q_{12}\) when \(Q_{11}\) and \(Q_{22}\) are fixed at their optimal values. The same behavior is mirrored for negative \(Q_{12}\). It is clearly seen that the choice of \(Q_{12}\) is unimportant, as long as it stays within the allowed region (cf. section II C). For this reason, and for simplicity, we choose \(Q_{12}\) to be zero for the purposes of this paper. This leaves two independent elements of \(Q\) for tuning.

For each time scale \(\tau = 1, 2, 4, 8, 16, 32, 64, \) and 128 seconds, we systematically scanned the region \(10^{-6} \leq Q_{11} \leq 1, 10^{-6} \leq Q_{22} \leq 1\), using logarithmically spaced grid points in both dimensions. Some of the results regarding the RMSE as a function of \(Q_{11}\) and \(Q_{22}\) are shown in Fig. 3-6 (one figure for each combination of 10 or 100 users and averaging time scale \(\tau = 4 \text{ seconds or } 32 \text{ seconds}\)).

We see in Fig. 3 and 4 that for 10 users, \(Q_{11} = 10^{-5}\) at the minimum for both time scales \(\tau = 4 \text{ seconds and } \tau = 32 \text{ seconds}\). When comparing the time scales, the quality of the estimation is much more sensitive to \(Q_{22}\) than \(Q_{11}\). The optimal \(Q_{22}\) is larger, and decreases as the time resolution increases. This is consistent with what is seen for the other \(\tau\). In general, a low value of \(Q_{11}\) is preferred, together with a \(Q_{22}\) which decreases as \(\tau\) increases.

\(^2\) The distribution of the synthetic cross traffic packet sizes roughly corresponds to observations from Sprint:

For the high-aggregation traffic case of 100 users, we see in Fig. 5 and 6 that a good fit is achieved using low values of Q_{11} and Q_{22}. There is no clear minimum, but we see also that there is no apparent reason to choose Q_{11} different from 10^{-5}, which turned out to be a suitable choice in the 10 user traffic case. However, a low RMSE is achieved as long as $Q_{22} \leq 10^{-4}$.

When we see that we can achieve good first-order characteristics of the estimation, i.e. good precision as measured by the RMSE, a natural next step is to go on to study the feasibility of reproducing higher-order characteristics, such as the temporal structure. We measure this using the variability, as defined in section III.

In Fig. 7 we see the variability of the available bandwidth versus Q_{22} for the traffic case corresponding to 10 users. The horizontal lines show the variability of the true available bandwidth at four different time resolutions. Of course, the true bandwidth does not depend on the estimation parameters; this is why these curves are horizontal lines. However, the variability depends on the time resolution τ. The more fine-grained the time resolution, the higher is the variability. The other curves show the variability of the BART estimate as a function of Q_{22} for three different Q_{11}. We see that provided Q_{11} is chosen low enough, it is possible to choose Q_{22} such that the variability of the estimate matches the true variability of the available bandwidth, for the desired time scales. This means that we may tune the method to reproduce the temporal characteristics of the true available bandwidth, by appropriately choosing Q_{22}.

Fig. 8 shows the same as Fig. 7, but for the traffic case corresponding to 100 users. With respect to Fig. 7-8, $Q_{11} = 10^{-5}$ turns out to be a suitable choice, since this makes it possible to restrict the variability tuning to Q_{22} and still obtaining a variability of the BART estimate that equals the true available bandwidth for a variety of time scales and cross traffic aggregation levels. For this reason, we choose $Q_{11} = 10^{-5}$ for the remainder of this paper; from now on, the analysis concerns the correlation between Q_{22} and the cross traffic variability (i.e. the variability of the true available bandwidth).
traffic aggregation cases and the 8 different time scales are plotted for optimum Q_{22} versus the variability of the true available bandwidth. We can observe something rather close to a scaling behavior, in that the optimum Q_{22} exhibits a power-law dependence on the variability, while only showing a very weak dependence on the aggregation level.

![Fig. 9. Optimum Q_{22} versus time resolution ($Q_{11} = 10^{-6}, Q_{12} = 0$).](image)

![Fig. 10. Variability of the true available bandwidth versus time resolution.](image)

![Fig. 11. Optimum Q_{22} versus variability of the true available bandwidth ($Q_{11} = 10^{-5}, Q_{12} = 0$).](image)

Note that we expect the variability to be closely related to the input parameter Q, and in particular Q_{22}, of BART. From (15), remembering that α is mostly constant, we see that ΔB and $\Delta \beta$ are basically proportional. This means that the variability (see (19)) should essentially be proportional to the square root of Q_{22}, since from (17) we have $Q_{22} = V(\Delta \beta)$. This is precisely what we observe empirically in Fig. 11.

In Fig. 12-13, the resulting BART tracking of the available bandwidth in the 10 user traffic case can be compared to the true available bandwidth for the averaging time scales $\tau = 4$ seconds and $\tau = 32$ seconds, respectively. Note that the true available bandwidth is exactly the same in both figures, it is only averaged over different time resolutions. The only difference between the BART estimation algorithms in the two cases ($\tau = 4$ seconds and $\tau = 32$ seconds) is that Q_{22} has been set to the optimal value for each time scale, with respect to the variability. In Fig. 14-15, the same is displayed in the 100 user traffic case.

In Fig. 12-15, the BART estimate and the true available bandwidth are presented using physical units; i.e. no normalization.

![Fig. 12. (a) shows the true available bandwidth and the BART estimate at 4 seconds time resolution, 10 users. (b) shows the same, but zooming in at an arbitrary interval of 300 seconds.](image)
Fig. 13. (a) shows the true available bandwidth and the BART estimate at 32 seconds time resolution, 10 users. (b) shows the same, but zooming in at an arbitrary interval of 300 seconds.

Fig. 14. (a) shows the true available bandwidth and the BART estimate at 4 seconds time resolution, 100 users. (b) shows the same, but zooming in at an arbitrary interval of 300 seconds.

Fig. 15. (a) shows the true available bandwidth and the BART estimate at 32 seconds time resolution, 100 users. (b) shows the same, but zooming in at an arbitrary interval of 300 seconds.
V. DISCUSSION AND CONCLUSIONS

We have studied a tuning opportunity of the BART Kalman filter-based method for bandwidth estimation, namely the tuning of the three free elements of the symmetric 2×2 matrix Q for optimizing the tracking quality for desired temporal characteristics.

First, we made use of the RMSE metric in order to investigate the precision of the BART estimate. It was found that when Q_{12} was chosen outside its theoretical bounds, the estimation quality broke down (cf. Fig. 2). This can be interpreted as a “sanity check” of the method. Further, we found no performance gain when allowing nonzero values; thus, we chose to fix $Q_{12} = 0$.

Regarding Q_{11} and Q_{22}, we found that the RMSE is highly dependent upon Q_{22}, whereas the choice of Q_{11} is less critical. The optimal value of Q_{22} was observed to decrease with increasing bandwidth averaging time scale τ and with increasing cross traffic aggregation.

A specific variability measure was suggested and used, in order to be able to tune the temporal characteristics of the estimation. It turned out that as long as Q_{11} is small enough, Q_{22} is the crucial element when tuning Q for bandwidth estimation variability. The recommendation is to assign Q_{11} a constant and small value, say $Q_{11} = 10^{-5}$ (note that this suggestion does not conflict with the results obtained from the RMSE investigation). Setting Q_{11} exactly equal to zero does not work well. The behavior of the filter would be too dependent on the choice of initial values x_0 and P_0. Also, the filter would probably perform poorly in the case of a change in the state variable α, i.e. the bottleneck link capacity. Consequently, it is better to allow for some uncertainty by choosing a small nonzero value for Q_{11}.

Provided Q_{11} is given a small value, it is possible to obtain a large range of variabilities of the BART estimate by simply tuning Q_{22}. The optimal Q_{22} decreases as the variability of the true available bandwidth decreases (i.e. Q_{22} decreases with increasing time scale and cross traffic aggregation). Also, from Fig. 11, it appears that, when fitted to a power-law behavior, the optimal Q_{22} roughly scales with the variability, with an exponent of 2.

Overall, the experimental results are consistent with what might be expected:

- Q_{11} and Q_{12} should be small (cf. the discussion in section II C).

- For rapid response to new measurements, which is needed for tracking at high variability, Q_{22} should be large. For a more stable tracking, suitable for low variability, Q_{22} should be small (cf. the argument in the end of section II A).

In conclusion, we have found that it is feasible to tune the BART filter-based estimation method for enhanced tracking performance at desired available bandwidth variability, by choosing the input parameter Q appropriately.

REFERENCES

